
Carnegie Mellon
Software Engineering Institute

Architecture Reconstruction of
J2EE Applications: Generating
Views from the IVIodule Viewtype

Liam O' Brien
Vorachat Tamarree

November 2003

Architecture Tradeoff Analysis Initiative

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Unlimited distribution subject to the copyriglit.

Technical Note
CMU/SEI-2003-TN-028

20040412 007

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2004 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Contents

Abstract vM

1 Introduction 1

2 Source Information Extraction 4

3 Architectural View Composition 7

4 Conclusions and Possible Future Work 16

References 17

CMU/SEI-2003-TN-028

CMU/SEI-2003-TN-028

List of Figures

Figure 1: Reconstruction Process 2

Figure 2: Sample Aggregator Window in ARMIN 8

Figure 3: View Showing tiie Packages and Reiationsliips Produced by ARIVilN... 10

Figure 4: Dependencies for tlie com.sun.ebanl<.ejb.exception Pacl<age 11

Figures: "Drill Down" to the Decomposition View of a Package 12

Figures: Components and Their Dependencies 13

Figure 7: Dependencies Between the Account and Data_Model Components 14

CMU/SEI-2003-TN-028

iv CMU/SEI-2003-TN-028

List of Tables

Table 1: Identified Element Types and the Relations Among Them 4

Table 2: The Understand for Java Tool Report Files and Their Related
Information 5

Table 3: Elements and Relations with Their Related File(s) 6

CMU/SEI-2003-TN-028

vi CMU/SEI-2003-TN-028

Abstract

This report outlines the application of architecture reconstruction techniques to the Sun
Microsystems' Duke's Bank system—a Java2 Platform, Enterprise Edition/Enterprise
JavaBeans (J2EE/EJB) application implemented mainly in Java. The goal of the
reconstruction was to apply architecture reconstruction techniques to a system implemented
in Java to produce a set of views that depict that system's architecture. Decomposition style
views of the module viewtype were used. They focus on the "is part of relation and show
how the system is decomposed into modules and submodules.

During the reconstruction, several decomposition style views of the architecture were
generated using the Understand for Java tool. That tool extracted and then abstracted low-
level source information from the system. Then that information was formatted using Perl
scripts, so it could be loaded into the Architecture Reconstruction and Mining (ARMIN) tool
developed by the Carnegie Mellon® Software Engineering Institute and the Robert Bosch
Corporation. The resulting views showed the architectural elements of the Duke's Bank
system and the dependencies among them.

CMU/SEI-2003-TN-028 vii

viii CMU/SEI-2003-TN-028

1 Introduction

Previously, we applied architecture reconstruction to systems in the embedded automotive
domain that were implemented in C [O'Brien 01] and on a visualization system implemented
in C++ [O'Brien 03]. This report outlines an architecture reconstruction carried out on the
Duke's Bank system—an online banking application that is part of the Sun Microsystems
tutorial on the Java2 Platform, Enterprise Edition (J2EE) [Sun 03]. We chose the Duke's
Bank system because it's implemented mainly in Java, and applying reconstruction
techniques to systems implemented in Java is the main focus of this reconstruction study.

The Duke's Bank system has two clients: a J2EE application client used by administrators to
manage customers and accounts, and a Web client used by customers to access account
histories and perform transactions. The clients access the customer, account, and transaction
information maintained in a database through Enterprise JavaBeans (EJB).

The primary goal of the reconstruction was to generate views from the module viewtype
[Clements 03], so we could understand how the static Java parts of the application were
decomposed and identify dependencies among them. Reconstruction of the dynamic behavior
and structure of the system were not carried out in this case study but will be the subject of a
future technical report. The secondary goal of this work is to determine how the architecture
of J2EE/EJB applications and applications implemented in Java can be reconstructed. We
also wanted to determine the usefulness of the Understand for Java tool [STI03] for parsing
and analyzing the Java code, and to determine how we could extract the various elements and
relations that were used in the reconstruction process from the Java code.

The reconstruction process, shown in Figure 1, consisted of the following steps:

1. Source Information Extraction: In this step, a set of elements and relations is
extracted from the system and loaded into the Architecture Reconstruction and
Mining (ARMIN) tool developed by the Carnegie Mellon® Software Engineering
Institute and the Robert Bosch Corporation.

2. Architectural View Composition: In this step, views of the system's architecture are
generated by abstracting the source information through aggregation and
manipulation using ARMIN [O'Brien 03]. The views are then presented to the
reconstructor who can navigate through and manipulate them.

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office.

CMU/SEI-2003-TN-028

Source Code
and System

Documentation

V
Source Information

Extraction

Elements and Relations

\/

Architectural View
Composition

Architectural Views

Figure 1: Reconstruction Process

The source code and any system documentation are input to the reconstruction process.
Typically during that process, the system's maintainers and developers provide information
about the system that helps the reconstructor generate the architectural views.' However in
this case, because we were interested only in the static decomposition of the Java code and
the dependencies among the various architectural elements, their help wasn't necessary.

We got the information we needed by parsing and analyzing the Java code, and then we used
that information to reconstruct views of the architecture. In a J2EE application, the system's
structure and architecture may be different at runtime than they are while the system is static.

The end result of the reconstruction process was a set of architectural views of the Duke's
Bank system. These views were from the module viewtype, and showed the static
decomposition of the Java code within the system and the dependencies among the various
architectural elements. Using ARMIN, the user can look at, navigate through, and manipulate
these views. Also, by selecting a particular component or connector between components, the
user can see information about it and can even "drill down" to see information about its

subcomponents.

Because those people are familiar with the J2EE technology in which the system is implemented,
the reconstructor would rely heavily on their input, especially if he/she didn't know much about
J2EE-impIemented systems.

CMU/SEI-2003-TN-028

ARMIN's Aggregator component contains an Interpreter that provides the capabiHty of
loading and running command scripts to carry out most of the tasks of Step 2 automatically.
After a command script is written in an editor and loaded into ARMIN, it can be used to

manipulate the data in the database and produce new views.

The remainder of this technical note is organized as follows. Section 2 describes Step 1:
Source Information Extraction. Section 3 describes the reconstruction activities that are part
of Step 2: Architectural View Composition, and Section 4 provides conclusions and

information on future work.

CMU/SEI-2003-TN-028

2 Source Information Extraction

Before beginning Step 1: Source Information Extraction, we have to determine which
information needs to be extracted from the source code. In this case, we want to understand
the static structure of the J2EE/EJB application so we can document the static relationship
among the architectural elements in the system. To do this, we determined which
architectural styles or viewtypes [Clements 03] were appropriate. In this case, we chose to
reconstruct the decomposition style from the module viewtype, because it shows how the
system's responsibilities are partitioned across modules and how those modules are

decomposed into submodules.

The decomposition style of architecture emphasizes the static behavior of a system. The main
relation outlined in this style is "is part of." To reconstruct views of this style from the
system, we identified which elements (files, classes, variables, etc.) and relations (file
includes file, class has_subclass class, etc.) we needed to extract from the system to generate
the decomposition style views. The element types and relations that we identified are shown

in Table 1.

Relation Name Source
Element

Target Element Explanation

defines_fn Class Function A class defines a function.

contains File Function A file contains a function.

defines File Class A file defines a class.

defines_class Package Class A package defines a class.

defines_gIobal File Global_variable A file defines a global variable.

defines_var Function Local_variable A function defines a local variable.

depends_on File File A file depends on another file.

has_member Class Member_variable A class has a member variable.

Table 1: Identified Element Types and the Relations Among Them

We used the Understand for Java tool [STI03] to parse and analyze the source code of the
Duke's Bank system. We generated a set of textual report files that show information such as
a call tree and a data dictionary for the system. To obtain the instances of the elements and
relations from these report files, the tool analyzed each file to identify which source elements
and relations could be extracted and used to generate decomposition style views of the
architecture. Table 2 shows the types of report files generated by the Understand for Java tool

CMU/SEI-2003-TN-028

that can be used to create decomposition style views, and the relations and element types

referenced within them.^

To ensure that information is not lost when instances of the same element types and relations

are extracted from multiple files, the list of element types and relations required for

decomposition style views are used as the reference for analyzing and selecting the list of

report files. Table 3 shows the types of report files from which the instances of element types

and relations required for this reconstruction case study were extracted.

Report Type Filename
& Type

Elements Relations

Data Dictionary bank.dic class, type, variable,
parameter, function,
include file, location of the
source code

has_member

Program Unit Cross
Reference

bank.pux function Calls

Object Cross Reference bank.obx variable, argument all defines_*
relations,
calls, sets

Class and Interface Type
Cross Reference

bank.tyx class contains, calls,
depends_on

Package and File Declaration
Trees

bank.dct package, class, methods defines_class,
contains

Class Extend Tree bank.cet class Calls

Invocation Tree bank.nvt class, method Calls

Simple Invocation Tree bank, sit class, method Calls

Import bank.itnp class :.mA-.s.,r'\-r:
Program Unit Complexity bank.cmx class, method defines_fn

Project Metrics bank.jme ■NM. :„■•. WA
Class Metrics bank-cme class, method N/A :v ■:;■
Class 00 Metrics bank.cmo class, method ■•.'N/A ■>-.:/■ ■■.■.:;-,

Method Metrics bank.pmx class, method N/A
File Metrics bank.finx file N/A :

Unused Objects bank.qno file' ..;-;■■■■■■:■••/.■■•■■-: N/A
Unused Types bank.qnt file,class ■WA
Unused Methods bank.qnu class, method N/A :

Table 2: The Understand for Java Tool Report Files and Their Related
Information^

Note that although additional relations and element types can be extracted to generate views from
other viewtypes and documentation styles, they were not examined in this case study.
The shaded rows in this table represent report files that are not usable in this particular architecture
reconstruction.

CMU/SEI-2003-TN-028

Relations & Elements Can Be Acquired from the Files

defines_fn, class, function bank.cmx, bank.dct

contains, file, function bank.pux, bank.dct

defines, file, class bank.cmx, bank.dct

defines_class, package, class bank.dct

defines_global, file, global_variable bank.obx

defines_var, function, local_variable bank.obx

depends_on, file, file bank.tyx

has_member, class, member_variable bank.dic

Table 3: Elements and Relations with Their Related File(s)

Once we identified which report files were usable in this reconstruction, we generated a script
that parsed and formatted the information from the selected files, so it could be extracted and
converted in the Rigi Standard Format (RSF) [Muller 93] and then loaded into ARME»J. We
created Perl scripts for parsing each individual report file and producing the set of instances
of the elements and relations in RSF. The scripts had to be developed and tested carefully in
an iterative development process. Any duplicate relations and elements were eliminated,
although ARMIN can handle duplicate instances of relations. The result of Step 1: Source
Information Extraction is a single file that contains all the instances of the elements and
relations from the Duke's Bank system that we needed to generate decomposition style

views.

CMU/SEI-2003-TN-028

3 Architectural View Composition

The first step in composing architectural views is to load the RSF file containing the
instances of the elements and relations into ARMIN [O'Brien 03]. ARMIN consists of three

major components:

1. Navigator: used to create, manage, and organize projects that contain all the instances of
the elements and relations that are stored in a database

2. Aggregator: used to visualize information loaded into ARMIN, and then to generate and
manipulate the views that are produced during the reconstruction

3. Interpreter: used to execute command scripts for abstracting data and generating views.
Those scripts can be created using a text editor and then loaded into the Interpreter for
execution. This component is linked to the Aggregator.

Figure 2 shows the elements (nodes) and relations among them (edges) as displayed in an
Aggregator window for the Duke's Bank system after they have been loaded into ARMIN.
On the right side of the window, the Entities'* and Relations checkboxes allow you to control

which elements and relations appear in the view.

"* In ARMIN, the term entity is used to represent an element. ARMIN can be used to represent
elements other than software ones.

CMU/SEI-2003-TN-028

& Aggregator

Fie Edt InterpretB- Help

Figure 2: Sample Aggregator Window in ARMIN ^

The view shown in Figure 2 contains all the low-level source information that was extracted
from the system by the Understand for Java tool. Clearly, the graph shown in the window is
unreadable and therefore unusable, so the data in it needs to be abstracted and used as input

to generate higher level architectural views.

ARMIN command scripts for reconstruction are developed to aggregate elements and
relations, aggregate group elements, and combine the extracted information in different ways
to provide different levels of abstraction. An excerpt from such a command script is shown

below.

#Create CLASS+ view
#collapse member functions and variables inside class
$d = desc(system.types.class);
$d.merge(/ext="+");
collapse($d,/graph="CLASS+",/type=system.types.class);

show () ;

^ All the graphical representations generated in ARMIN are in color. The color of a box indicates the
type of element, and the color of its edges indicates the type of relation.

8 CMU/SEI-2003-TN-028

The desc command in the above code generates a hst of the functions and member variables
within each class. Next, the merge command appends a plus sign (+) to the end of the class
name and merges it into that list. Then, the collapse command removes the list of source
elements (functions and member variables) from the current graph and creates a new one. In
that new graph, each class name ends in +, indicating that the class is now an aggregation of
elements rather than a single element. The new graph is called CLASS+. Finally, the show

command displays the new graph in the Aggregator window.

The command script used for the Duke's Bank system executed the following abstractions
that were later used to generate the decomposition style view:

• collapsing the local_variables inside each function to produce the FUNCTION+ graph.
Local_variables inside functions are not architecturally relevant.

• collapsing the functions and global variables defined within each file to produce the

FILE+ graph

• collapsing the files in which a class is defined inside each class to produce the CLASS+

graph

• collapsing the classes inside each package to produce the PACKAGE graph

Figure 3 shows the result of running the entire script: the PACKAGE graph. This graph
shows the decomposition style view of the Duke's Bank system's architecture at the package
level. Within the Aggregator window, you can click on the various tabs to see other graphs

created by the script.

CMU/SEI-2003-TN-028

Mf Agtjregator

Fie Edt Intapreter Hdp

Jaixj

BS St""--
S Source I (i FUNCTION-i-l |g CLASSt| g) FILE-f| |g CLASS-H- (g PACKAGE

con5 sun el.ank .vet'.taglrb^

::i^
CiF:Label«r Path P Edges TAirawsr Vertical "^ 1D0% grid i^defsult^

A!

Entrtiss

17 j

F .

F;

F j

F .

P j

P i

lQC3l_vanable

mefnb8r_vanable

object

file

class

function

aggregation

pacltage

p -ijf^t globat_vanabl8

Relations

FJ

F J

FJ

p.

F,J

p jsojom dslinss^cfass

P jHM delines^b^

F JBBM etna

p jsiaaai riatinas.fii

F ' has^inslanca

Apt^y I All I None |

c:\Pfogram Flles\armin\armtn >
c:\Pfogram Flles\armin\armin >
c;\Program FIIes\armin\armin >
c:\Program Flles\armm\armin >
c;\Program Flles\armin\armin >
c:\Progfam Ftles\armin\armin >
c:\Program Fl!es\armin\armin >
c;\Program Flles\arfYiin\armtn >|

"3

■^

defines

contatn&-aggfe93tton

depends^en

corYtams

has^member

■^

±]

 ^..M
■riffB

F/gfure 3; View Showing the Pacl<ages and Relationships Produced by ARMIN

Each node in the graph above represents a package. ARMIN lets you view only the package
you select and those that are dependent on it. Figure 4 shows an example of this—^the
"depends_on" relation from Table 1 that represents the importing of a set of classes and their
associated methods from one file in one package into a different file in a different package.

10 CMU/SEI-2003-TN-028

|» Dependencies of <com.sun.ebank.ejb«}^cepti(W Jnjxj

com.sun.ebank.web+

com.sun.ebank.ejb.tx+
com.sun.ebank.ejb.customer+

com .sun .ebank^jb .account+

cottKgun.ebank.appclienH-

iJF Labels r Path FEdges r?ArrowsrtVer1ical <\ 154% grid ▼[default ■▼[

Figure 4: Dependencies for the com.sun.ebanl<.ejb.exception Pacl<age

ARMIN also provides the capability to "drill down" into multiple levels of detail for a
particular package. The tool can show the decomposition of the package into classes and
further decompose a class into detailed source elements such as files, functions, and
variables. The "drill down" views of the system represent decomposition style views of the
application. The subgraph shown in Figure 5 contains only the classes that are part of the
com.sun.ebank.ejb.exception package.

CMU/SEI-2003-TN-028 11

Subgraph of <com.sun.ebank.ejb.exce{itt|i^K

MissingPrimaiYKeyException++

CustomerlnAccciiintExc.eption++

|7.Labels rPath R Edges F Arrows T. Vertical Q. 100% radial VJdefault ▼{
BiBi^.B

Figure 5: "Drill Down" to the Decomposition View of a Pacl<age

So far, we have shown the package decomposition style view for the appHcation and can
view the dependencies among them. We can also generate a further abstraction of the source
information by identifying other high-level elements of the system. The Duke's Bank system
has components such as Customer and Account, which we identified by examining the
application's code and documentation. By identifying the set of high-level components and
grouping the classes that are part of the representation of each component within the system,
we can generate a view of the architecture showing those components and the dependencies

among them.

12 CMU/SEI-2003-TN-028

We developed a command script in ARMIN that identified the set of classes that comprise
each of the high-level components. An example script for the Customer component is as

follows:

create Customer component

$cust={{{"Customer"},{list("Customer*", system.types.class)}}};

$comps.append($cust);

In the above script, a list of all classes beginning with the word "Customer" such as
Customer, CustomerBean, CustomerHome, and so forth is created. Each class is then
collapsed within the high-level components in which it belongs, and a new view is generated
in the Aggregator. Figure 6 shows the view containing these components and the
dependencies among them. Again, it is possible to "drill down" to various levels of detail for

these components.

KJ Aggregator

Ne Edt Interpreter Help

Qs at*^
ia Sowcg] B FUNCTlON-t-l g) CJASS*] B FILE-*| g) CUSSU (g Componaflts

wpar'TT"iW'Twi'itii'iBmiiii'' ' Lumuiii uwapag'frr
c APtogram Fll9S\arfnm\armin > TransferBsaiH-*
c:\Program Flle9\amim\armin > Dale++
c:\Program Flles\armm\ami!n > <-coll8pSB pOms; n'8=11 •"5=53 cors crealed=11 newmulti cor5=20 e's cr9iIfl(J=122|
c \P(ogfam FllesVafmirVaimm >5howO;
c:\Prog(am FllesXarminXarmm > ->8how
c \ProgfamFlles\armm\armin > <-show|591ms}
c \Program FilesNarmiMamim > <-script (6570ms}
c:\Progfam Flles\anT)m\armin > __

■iiirB

Figure 6: Components and Their Dependencies

By selecting an edge between two components, such as the edge between Account and
Data_Model, we can show the details of the dependencies between them. Examples of such
dependencies are shown in Figure 7. They include function calls between the components
and import dependencies (depends_on relation).

CMU/SEI-2003-TN-028 13

xj
Bji Account-> Data_model

B _j AccountControllerHome++ -> DataModel++
B jJava::AccountControllerHome.java+-> Java::DataModel.java+

^ # Java::AccountCcintrollerHome,java-> Java::DataModel.java
B- '3 AccountDetails++ -> DataModel++

IEl<Jjava::AccountDetails.java+->java::DataModel.java+
^ « java::AccountDetails.java -> java::DataModel.java

iJ AccountController++ -> DataModel++
& 11a Java:: AccountController.java+-> Java:: DataModel.java+

^ ♦ java::AccountController.java -> java::DataModel.java
B 'IJ Data_model -> Account

S GJ DataModel++-> AccountDetails++
& lla DataModel+ -> AccountDetails+

B 11^ DataModel::createActlnf+-> AccountDetails::getCreditLine+
i # DataModel::createActlnf-> AccountDetails::getCreditLine

Ip Clii DataModeI::createActlnf+ -> AccountDetails::getBeginBalance+
^ • DataModel::createActlnf-> AccountDetails:;getBeginBalance

B-\r3 DataModel::createActlnf+-> AccountDetails::getType+
^ ♦ DataModel::createActlnf-> AccountDetails::getType

IIilJ DataModel::createActlnf+ -> AccountDetails::getDescription+
B CJ DataModel::createActlnf+ -> AccountDetails::getBeginBalanceTimeStampH
B CJ DataModel::createActlnf+ -> AccountDetails::getCustomerlds+
SO DataModel::createActlnf+-> AccountDetails::getBalance+
U java::DataModel.java+ -> java::AccountDetails.java+

B CJ DataModel++ -> AccountController++
B CJ DataModel++-> AccountControllerHome++

Figure 7: Dependencies Between thie Account and Data_Model Components

To verify the decomposition view of the architecture, the directory structure of the source
code is analyzed and compared. For example, the containment structure of the class inside the
package as shown in Figure 5 can be verified by opening the files inside each Java package to
see if the classes in the package match the list produced by ARME^. Analysis of the
decomposition view verified that it contains the right information about the static structure.

We verified the component view of the architecture (shown in Figure 6) by randomly
selecting a small set of components and investigating (from the source-code level) the

dependencies among them.

14 CMU/SEI-2003-TN-028

These static views of the system show the dependencies between packages and components.
The views could be used to help maintain the system, because they highlight the
dependencies between the packages and components. It would be difficult to identify those

dependencies just by scanning the application's code. These views could support the
refactoring of the system if some of the dependencies need to change. Knowing the
dependencies involved helps to decide whether a particular component can be reused in a

new system.

CMU/SEI-2003-TN-028 15

4 Conclusions and Possible Future Woric

Architecture reconstruction can be used to produce different decomposition style views of a
system's architecture that are useful for maintaining and documenting the static behavior of a
system. Clearly defining the details of the views to be generated before starting the
reconstruction process helps to scope the reconstruction work. It also helps to identify which
information should be extracted from the source code and later used in the reconstruction
process. The set of elements and relation types must be produced before the data containing
their instances is extracted from the source code. Such documentation might require
knowledge about the different architectural documentation styles and viewtypes, since they

represent different elements and relations.

Extracting the instances of the elements and relations from the Understand for Java tool
required the most effort. The integrity of the data, extracted from the source code and
imported into ARMIN, depends mostly on two tools: Understand for Java and Perl scripts.
Tools that can read and parse the source code, and produce text output files should be
evaluated to compare the quality and amount of data they produce at both the element and
relation level. The tool chosen for this purpose must be able to produce the correct output and
be manipulated with Perl scripts so the correct set of element and relation instances can be
captured. Although we found the Understand for Java tool to be useful overall in this
particular reconstruction study, several of the report files it produced were not. The Perl
scripts must be developed and tested carefully during an iterative process.

Creating the ARMIN Interpreter command scripts for abstracting and composing the views of
the architecture requires an understanding of the syntax and semantics of the ARMIN
Reconstruction Language. Verification of the architecture's decomposition style views can be
done with little knowledge of a J2EE/EJB application. However, if the component-and-
connector viewtype (which shows dynamic views of the system) is the main focus, a J2EE
expert might be needed to do the verification.

The time it takes to extract the source information and produce architectural views using
ARMIN is expected to be significantly faster than a manual architecture reconstruction
approach. The main reason for this is that the time it takes to go through each package, file,
class, function, and variable can be considerable, especially with larger applications.

Possible future work could include generating dynamic views of the Duke's Bank system and
generating architectural styles that are part of the component-and-connector viewtype. We
will continue to use ARMIN on other reconstruction projects.

16 CMU/SEI-2003-TN-028

References

URLs valid as of the publication date of this document

[Bodoff 03] Bodoff, S.; Green, D.; Jendrock, E.; & Pawlan, M. The Duke's Bank
Application, <http://java.sun.com/j2ee/tutorial/l_3-fcs/doc

/Ebank.html> (2003).

[Clements 03] Clements, P.; Bachmann, R; Bass, L.; Garlan, D.; Ivers, J.; Little,
R.; Nord, R.; & Stafford, J. Documenting Software Architectures:
Views and Beyond. Boston, MA: Addison-Wesley, 2003.

[Miiller 93] Muller, H. A.; Mehmet, O. A.; Tilley, S. R.; & Uhl, J. S. "A Reverse
Engineering Approach to System Identification." Journal of
Software Maintenance: Research and Practice 5,4 (December

1993): 181-204.

[O'Brien 01] O'Brien, L. Architecture Reconstruction to Support a Product Line
Effort: Case Study (CMU/SEI-2001-TN-015, ADA395167).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2001. <http://www.sei.cmu.edxi/publications
/documents/01 .reports/01 tnO 15 .html>.

[O'Brien 03] O'Brien, L. & Stoermer, C. Architecture Reconstruction Case Study
(CMU/SEI-20O3-TN-008). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2003.
<http://www.sei.cmu.edu/publications/documents/03.reports

/03tn008.html>.

[STI 03]

[Sun 03]

Scientific Toolworks Inc. <http://www.scitools.coni/> (2003).

Sun Microsystems, <http://www.sun.com/index.xml> (2003).

CMU/SEI-2003-TN-028 17

18 CMU/SEI-2003-TN-028

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time tor reviewing instmctions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Sen/ices, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

November 2003

3. REPORT TYPE AND DATES COVERED

Final

4. TrTLE AND SUBTITLE

Architecture Reconstruction of J2EE Applications: Generating Views
from the Module Viewtype

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

Liam O'Brien and Vorachat Tamarree

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION

REPORTNUMBER

CMU/SEI-2003-TN-028

9. SPONSORING/MONrrORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
HanscomAFB,MA01731-2116

10. SPONSORING/MONrrORING AGENCY

REPORT NUMBER

.11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report outlines the application of architecture reconstruction techniques to the Sun Microsystems' Duke's
Bank system—a Java2 Platform, Enterprise Edition/Enterprise JavaBeans (J2EE/EJB) application
implemented mainly in Java. The goal of the reconstruction was to apply architecture reconstruction
techniques to a system implemented in Java to produce a set of views that depict that system's architecture.
Decomposition style views of the module viewtype were used. They focus on the "is part of relation and show
how the system is decomposed into modules and submodules.

During the reconstruction, several decomposition style views of the architecture were generated using the
Understand for Java tool. That tool extracted and then abstracted low-level source information from the
system. Then that information was formatted using Per! scripts, so it could be loaded into the Architecture
Reconstruction and Mining (ARMIN) tool developed by the Carnegie Mellon® Software Engineering institute
and the Robert Bosch Corporation. The resulting views showed the architectural elements of the Duke's Bank
system and the dependencies among them.

14. SUBJECT TERMS

architecture reconstruction, J2EE/EJB, decomposition style

15. NUMBER OF PAGES

28
16. PRICE CODE

17. SECURrrYCUSSIFICATlON

OF REPORT

Unclassified

18. SECURITY CLASSIHCATION OF

THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Fomn 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

